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Most suspensions exhibit a rheological behaviour which cannot be represented 
by either Bingham’s or Ostwald-De Waele’s law. In  studying such cases a 
very simple expression with only three parameters may be used. Starting with 
an intermediate law of this sort, this paper gives velocity profiles and head losses 
in laminar flow, which have been computed and plotted on diagrams in non- 
dimensional co-ordinates. 

It has been found that transition flow rates in circular tubes for data taken from 
the literature and from experiments conducted on drilling muds a t  the Institut 
Frangais du P6trole, are efficiently predicted by an empirical criterion (Ryan & 
Johnson 1959) which establishes a relation between a generalized Reynolds 
number and a generalized Hedstrom number. 

1. Rheological relationships 
Engineers interested in problems relating to the flow of muds in circular or 

annular conduits during the process of drilling, usually simplify the rheological 
behaviour of the medium by assuming the validity of Bingham’s law or that of 
Ostwald and De Waele (see, for instance, Melrose & Lilienthal 1951). On closer 
examination, it appears that neither law is capable of fully describing the be- 
haviour of drilling muds or other suspensions such as cement slurries, greases, 
etc. Figures 1 and 2 show clearly that the experimental curve for a typical drilling 
mud does not conform either to Bingham’s law (straight line in the diagram of 
figure l ) ,  or to Ostwald-De Waele’s law (straight line in the diagram of figure 2). 
Various constitutive equations have been proposed to represent such fluids 
(Casson 1959; Sisko 1958; Powell & Eyring 1944; Herschel &Bulkley 1926;Briant 
1956, etc.). All except Casson introduce three parameters for the sake of better 
data representation. 

With the aid of the formulas given by Krieger & Maron (1954), it is possible to 
obtain a rheological relationship between the shear stress r and the shear rate y 
from the torques measured at various speeds using coaxial-cylinder visco- 
meters. We have found that the rheological law introduced by Briant (1956), 
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satisfactorily represents experimental data in the investigated range, where 
m is a non-dimensional parameter, r, has the dimensions of shear stress and pa 
the dimensions of viscosity. 

Equation (1) can be put in a non-dimensional form by introducing a reduced 
shear rate 

(2) Y* = mPrnj/rm, 

and a reduced shear stress r* = mrlr,; (3) 

this gives r* = y* I -m(  1 +?*)me (4) 

Y (s-9 
FIGURE 1. Diagram for a drilling mud with rheological parameters: m = 0-4, T ,  = 8-8 
N/m2, ,urn = 0.014 P1. - , experimental curve; - - - , Bingham fluid having same 
asymptotic behaviour as -+ co; - - - - - , Ostwald-De Waele fluid having same 
behaviour as i, 3 0. 

This relation is shown diagrammatically in figure 3 as a family of curves for 
logr* vs. log ?*. This diagram allows us to determine the values of m, r, 
and p, from experimental results obtained in coaxial-cylinder viscometers. 
This is done by plotting the experimental points on transparent paper in 
the form of a logarithmic diagram, using the same scale as in figure 3. The 
transparent diagram is then placed on top of figure 3 and moved until the 
points lie on one of the curves or on an interpolated curve between two curves of 
figure 3. This is shown in figure 2, from which can be determined the value a of 
the shearing stress corresponding to r* = 1 and the value b of the shear rate 
corresponding to Y* = 1. It is seen that 

r, = ma, p, = a/b. ( 5 )  
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FIGURE 2. Log 7, log 9 diagram for the same drilling mud as in figure 1 showing determina- 
tion of its rheological parameters using figure 3. 
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A further example is given in figure 4, for drilling mud. The values of the rheo- 
logical parameters are (using M.K.S. units) 

m = 0.8, r ,  = 3-32N/m2 and p, = 0.0078P1. 
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FIGURE 4. Characteristic curve for a drilling mud: m = 0.8, T, = 3.32 N/m2, p ,  = 
0.0078 P1. +, From coaxial viscometer with a gap of 0.0119 cm; 0, from coaxial visco- 
meter with a gap of 0.0130 cm. 

2. Laminar tiow in a circular conduit 
Because very low torques cannot be accurately measured on viscometers, we 

have used (l), not only as an interpolation but also as an extrapolation formula 
for the lower values of shear stresses, in order to calculate velocity profiles and 
head losses in laminar flow in a circular conduit. As low values of shear stress are 
found only in the near-axis region, the guessing of shear rates has a non-negligible 
influence on the form of velocity profiles and hence on the flow rate, the pressure 
gradient being given. The validity of the extrapolation will be examined a 
posteriori by comparing the calculated head losses with the experimental 
results. 

By applying the momentum theorem, it is possible to show that the tangential 
stress in a fluid flowing through a circular pipe of radius R is given by 

T ( r )  = ?TR/R, (6) 

where rR stands for r(R), and T is the local radial co-ordinate. 
If we assume the velocity u(R) at the wall of the tube to be zero, the fluid 



Flow of drilling muds and suspeasions 

Using the reduced variables ( 2 )  and ( 3 ) ,  we obtain 

and, on integration by parts, 

453 

(8) 

(9) 

where 7% E j*(R). 

Using (4), the integral 

can be put in the form 

I n  these integrals, we put 
av 

c T =  
1 + a( 1 - v) * 

where 2Fl is the hypergeometric function defined by the series 

This series converges for 1x1 < 1 and the function can also be expressed in the form 
of the definite integral 

if Re(@) > 0 and Re(y-p) > 0. 

Finally, the velocity is given in the following parametric form: 

with y* denoting the parameter. Here, the function P is defined as 

2-m 
zF1(3, 2 -m;  3 -m;  v*/(l+p*)). 
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Head losses per unit length 

Head losses per unit length are given by 

A@/L = 2TR/R (16) 

where L is the length of the pipe and the driving pressure is 

x being a vertical co-ordinate, g gravity and p the fluid density. The friction 
factor, f ,  is, by definition, 

p = p+pgz ,  

(17) 
4.R A@ 8 r R  

f=:-=*, pu2 L 

where U is the mean velocity defined by 

- 2 
u = rudr. 

Using dimensional analysis, it  is possible to show that the friction factor is a 
function of two non-dimensional numbers when the fluid is non-Newtonian in 
the sense of equation (1). 

We introduce here a generalized Reynolds number 

Re = pTiD/p,, (19) 

He = D2prW/m,&, (20) 

and a generalized Hedstrom number 

where D = 2R is the tube diameter. 
In  laminar $ow, Martin & Le Fur (1963) have shown that the friction factor 

takes a special form: 
(21) 

where the function @ is related to the expression for T* as a function of y*. If we 
plot the reduced pressure gradient in terms of 

f(Re, He) = (8He/Re2) @(Re/He), 

- Re2 2mDA9 8mrR f = f -  =---- - -~ 
He r, L r, 

as a function of a new non-dimensional number 

q being the flow rate, we obtain a single curve for all tube diameters. The coeffi- 
cient f may be interpreted as being proportional to the ratio between the wall 
shear stress and the characteristic shear stress of the liquid. The number N is 
the reduced volume flow rate. For Bingham bodies, it would be inversely pro- 
portional to the number introduced by Prager (1961). 

By calculating the mean velocity U from equations (14), the following para- 
metric relation between N and pis obtained : 
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Logf is shown, for different values of the parameter m, as a function of log N in 
figure 5. If we now introduce the reduced radius 

r* = +fr;./R, 
and the reduced velocity u* = f j N U l G ,  

we can obtain a diagram from which it is easy to deduce the velocity profiles. 

10 

1 

10-1 

10-2 

FIGURE 5. (log?, log N )  calculated for different values of m. 

The reduced velocity defect Au* is a parametric function of the reduced radius 

Au" = U$ - U* = P ( j * )  

- - j * 2 - r n ( 1  

r* = ?*l-m (1 + ?*>m' 

where u& is the maximum reduced velocity on the axis of the tube. A diagram 
derived from the computations of Lasvergeres & Lanchon (1962) is shown in 
figure 6. 

Once the flow rate q and the characteristic parameters m, r, and ,uw of the liquid 
are known, one can obtainffrom figure 5.  In  figure 6, the ordinate corresponding 
to i f i s  uk. It is now possible to draw the true velocity profile. 
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0 1 2 
r* = +rj/R 

FIGURE 6. Calculated profile for the reduced velocity defect (Au*, r*). 

Comparison with experiment 

The laboratory apparatus consisted of horizontal, cylindrical, smooth tubes of 
steel or glass. Their internal diameter was accurately determined by measuring 
the loss of head when a Newtonian fluid of known viscosity (glycerine solution) 
was made to flow through it. Three equidistant 0.5 cm I.D. pressure taps were 
provided at right angles to the axis of the tube. The tubes had sharp-edged 
entrances and the distance of the first tap from the entrance was at least 50 tube 
diameters. As maintained by Bogue (1960), this length appeared to be satis- 
factory for measuring asymptotic pressure gradients in laminar or turbulent 
flow, whether Newtonian or non-Newtonian. 

Table 1 gives the dimensions of the tubes, including entrance length and posi- 
tion of pressure taps. 

The mud was circulated through the tube: 
(a)  by a centrifugal pump, when the flow rate was high; 
(b )  by gravity from a vessel fed by the pump; 
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( c )  by lowering the pressure in a vessel situated downstream, the upstream 
reservoir being at atmospheric pressure (figure 7). 
The last two methods were used when the flow rate was low. 

The pressure differences between the first and the second tap and between the 
second and the third tap were measured by two U-tubes filled with carbon tetra- 
chloride, bromoform or mercury. In the latter case, carbon tetrachloride was 
used as an intermediary liquid between the mud and the mercury. When the 

Glass tubes 0.3 
0.57 
1.0 

Steel tubes 1.2 
1.6 
2.0 
2.6 

Total 
length 
(cm) 

200 
200 
200 

600 
600 
600 
600 

Dimensions downstream to 
entrance (cm) 

I 
A > 

Tap 1 Tap 2 Tap 3 

25 100 175 
35 105 175 
55 115 175 

75 300 525 
85 300 515 

100 300 500 
150 300 450 

TABLE 1 

Rcscrvoir 

, / I  3 way stop-cock 

‘Yaps 

FIGURE 7. Diagram of the apparatus with lowered downstream pressure. 

flow rate was high, it was measured by a Foxboro electromagnetic flow meter 
whose calibration had first been checked with a Newtonian fluid (water) as 
well as a non-Newtonian liquid (bentonite suspension). When the flow rate was 
low, we weighed the volume of fluid which had been discharged into a weigh tank 
for a given time. In  the arrangement with two vessels (figure 7 )  we measured the 
time taken to fill the calibrated volume between levels 1 and 2 in vessel A or B. 
It was decided that the difference between levels 1 and 2 should be so small that 
the variation of pressure during the measurement could be neglected. All the 
measurements were made at  ambient temperature. The variations of room 
temperature during the course of an experiment were so slight that the rheo- 
logical characteristics were constant. 

In  figure 8, as an example, we have plotted the experimental points in the form 
of a graph of logfvs. log N .  It is seen that the points trace a single curve regard- 
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FIGURE 8. Experimental curves representing losses for two drilling muds. a - m = 0.9, 
r, = 12.95 N/m2, p, = 0.0026 P1; b - m = 0-5, r, = 14 N/m2, pa = 0.0217 PI. +, pre- 
dicted points; 0 , 1 - 2  cm I.D. pipe; A, 1.6 em I.D. pipe; 0, 2.0 cm I.D. pipe; V, 2.6 em I.D. 

pipe. 

Rheological Coaxial-cylinder Circular 
parameters viscometers tubes 

w r  A 7- 

Fluids 7, p m  ?,,,in Ymax *,,,in 7mr  in T R ~ X  

(aqueous suspensions) N/mZ P1 s-l s-l N/mz N/m2 N/m2 N/m2 

Bentonite I(')-60 g/l. 0.9 10.8 0.0026 11 2256 4.4 16.5 9.5 15.5 
Bentonite 11(2)-55 g/l. 1 12-6 0.004 20 2256 11.3 20.9 12 16 
Bentonite + 0.85 3.6 0.0036 29 1950 2.5 11 4.3 9.3 

Bentonite 1-100 g/l. + 0.9 16 0.008 3 2256 11.8 31.9 13.5 25 

Bentonite + inorganic 0.5 9.3 0.019 11 2256 2.1 49 7.5 40 

Bentonite + organic 0.6 2.9 0.0048 29 2500 1.3 15.4 2 10.5 

calcium chloride 

inorganic thinner") 

thinner'3' + CMC(4) 

thinner ~ 5 )  + CMC") + 
calcium chloride 

thinner") + CMC(*' + 
Bentonite + organic 0.3 3.5 0.003 110 2500 5.6 87.3 4.2 82.2 

gyps- 
Attapulgite clay 0.9 6.2 0.003 130 2500 5.6 13.7 6.1 11.8 

(1) Bentonite for oil-well drilling mmd. 
(2) Bentonite for oil-well drilling mud of different manufacture. 
(3) Sodium phosphate. 
(4) Carboxymethylcellulose. 
(5) Ferrochrome lignosulphonate. 

TABLE 2. Summary of values of rheological parameters and ranges of determination 
(data obtained at Institut FranCais du PBtrole) 
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less of the tube diameter; in the case (a), this curve coincides with the calculated 
curve corresponding to m= 0-9. Occasionally, like in the case ( b ) ,  we noticed 
that  the experimental curve did not coincide with the calculated one but was 
parallel to and slightly below it. This difference in behaviour is due to the fact 
that the fluid in question did not follow Briant’s law exactly for the lower values 
of the shear velocities. In  such a case it is necessary to make new measurements 
at lower rotation speeds and to compose a more elaborate formula than equation 
(1)  involving four or even more parameters. 

f- 

Fluids 

Cement rock slurry 
Tho, suspension 
Tho, suspension 
Lime suspension 
Attasol suspension (11.8%) 
Attasol suspension (13%) 
Sewage sludge 
Sewage sludge 

Rheological parameters 
A > 

m 7, P m  

1 5.12 0.0028 
1 33.1 0.0057 
0.9 77.8 0.0075 
0.9 23 0.00512 
0.7 142 0.0026 
0.7 330 0.0038 
1 3.73 0.03 
1 0-8 0.056 

N/ma P1 

Circular tubes 
& 

4.6 7.3 
45 100 
55 195 
12.5 62-5 
22.5 263 
42.5 332 
32.3 47 
10-8 18.1 

(1) Wilhelm, Wroughton & Loeffel (1939). 

(4) Alves, Boucher & Pigford (1952). 

(5)-(6) Dodge (1958). 
(7)-(8) Cadwell & Babbitt (1941). (2)-(3) Thomas (1962). 

TABLE 3. Summary of values of rheological parameters and ranges of determination 
(data from literature) 

In  the following, we have restricted our investigation to the group of fluids 
showing agreement between experimental and calculated head-losses curves. 
Table 2 gives the values of the rheological parameters m, T,  and p, for this group 
of fluids. Ranges of values obtained with coaxial cylinder viscometers (minimum 
and maximum values of shear velocities and shear stresses) and with circular 
tubes (minimum and maximum values of wall shear stresses) are also given. 
Table 3 shows the values of the rheological parameters deduced from head- 
losses data obtained by previous authors on several different fluids. 

3. Transition of the flow 
The Ryan & Johnson criterion 

It is well known that laminar flow in a pipe becomes turbulent at  a certain 
critical flow rate. When the fluid is Newtonian and the conduit circular, transi- 
tion occurs a t  a Reynolds number which varies slightly with the perturbation 
level in flow but which has a mean value of 2100. In  the case of a non-Newtonian 
fluid, one can deduce from dimensional analysis that the transition will occur at  
a value (of the generalized Reynolds number) which is a function of the general- 
ized Hedstrom number. But we have no reasons to think that this function would 
be a constant. 

Since, a t  present, there exists no theory of transition, different authors have 
turned to empirical criteria of transition (Metzner 1956; Ryan & Johnson 1959). 
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It has been shown by Hanks & Christiansen (1962) that Metzner's criterion 
(friction factor f equal to 3 x does not apply very well when the fluid cannot 
be considered of the power-law type. We have therefore employed the criterion 
proposed by Ryan & Johnson (1959) in order to estimate the conditions for 
transition in non-Newtonian fluids in circular tubes. In  this case, one assumes that 
the flow is turbulent if the dimensionless function 

Rpu du Z ( r )  = --- 
T~ dr 

attains values in excess of 808. The flow rate corresponding to transition will 
then be that for which the maximum value of Z ( r )  i s  equal to 808. This value was 
chosen so that the Reynolds number would be equal to 2100 for a Newtonian 
fluid (parabolic velocity profile). 

An interpretation of this empirical criterion has been given by Hanks (1963). 
The Z function is proportional to the local ratio of a part of the inertial terms 
IpV A curl VI and of the viscous term Idiv~1 in the momentum equations, when 
V is the velocity and 'c the deviatoric stress tensor. In  the case of a circular pipe, 
pV A curl V is a vector in the radial direction and div7 is a vector in the axial 
direction. The value of the latter is equal to 

1 d(r7)  
r dr * 

-- 

We can calculate Z ( r )  from the parametric equations (14 )  for u. Hence 

Z(p*) = (2Helmf)  q * p z m - 1 ( 1 +  pg)-m [P( jg)  - P(j*)] .  

The maximum of Z is obtained for a value of r such that d Z / d r  = 0. This condition 
can be expressed in the equivalent form dZ /d j *  = 0 ,  since the function y*(r*)  
is monotonically increasing. Since 

dZ&* = ( 2 ~ e / m f " )  p z m - 1 ( 1 +  pg)-m [ ~ ( j g )  - 

- ( 1  - m + ?*) ( 1  + p*)m-1/?*m-2], (26 )  

the value of ?; which makes dZ /d j *  = 0 will then be the solution of the equation 

P ( j z )  = P ( j z )  + (1 - m + ?z) (1 + ?z)m-1/p*m-2; (27 )  

hence it is a function of jg. 

be given by the following expression: 
When the maximum of Z is equal to 808, the reduced pressure gradient fmust 

f = ( rnHe/404) j z j zm- l (  1 + ?;)-" [P(pg)  - P(j;)]. (28) 

If, in figure 5 ,  logfvs. logN, a curve is drawn with 

for the abscissa and the value offgiven by (28)  for the ordinate, the intersection 
of this auxiliary curve with the curve of the parametric expressions (24 ) ,  which 
corresponds to the head drop in laminar flow, will be the point representing tran- 
sition in the flow. 
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The Reynolds number of transition, Re,, is expressed as a function of He by 
the following parametric equations: 

in terms of the parameter j z .  Curves representing log Re, as a function of log He 
are shown in figure 9. When m = 0, it  is clear that Re, = 2100. When m = 1, 
one obtains the curves previously calculated by Hanks (1963) for a Bingham 
body. It is observed that all the representative curves for 0 < m < 1 do not lie 
entirely between the curves for m = 0 and m = 1. This explains why Hanks 
(1963) found that certain experimental points were above the curve correspond- 
ing here to m = 1, since these points should belong to fluids whose plasticity para- 
meter m is closer to 0.9 than to 1. The discrepancy is seen to be more pronounced 
in the figure given by Hanks, since its value of He is referred to the asymptotic 
Bingham body and is equal here to mHe, as defined by equation (20). 

Comparison with experiment 

We present here some experimental results on the transition from laminar to 
turbulent regime for several fluids obeying the Briant equation, the flow still 
being in tubes with circular cross-section. These results were deduced either from 
published data obtained with fluids of widely varying composition or from mea- 
surements made at the Institut Franpais du Pbtrole, especially with drilling 
muds. 

In all the cases considered, the transition flow rate is that which corresponds to 
the end of the laminar and not to the beginning of the fully turbulent flow, if the 
extent of the transition zone is appreciable. In  figure 10, for instance, representa- 
tive points for the laminar and turbulent flows of a drilling mud are plotted. All 
laminar points are located on the same curve. The turbulent points are on differ- 
ent straight lines corresponding to different Hedstrom numbers. Thus, the ab- 
scissae of the kinks give us the values of the transition Reynolds number as a 
function of the Hedstrom number. 

Figure 11 shows the correlation between the values of (ReJcalc given by the 
Ryan & Johnson criterion and the values (ReJexp obtained by experiment. 
The agreement between them seems satisfactory. 

Practical use of the transition diagram 

In  practical cases, the diagram in figure 9 can be used to ascertain the nature of 
the flow, particularly when design calculations are made to determine the loss of 
head for pump dimensioning. If a given flow rate is prescribed, and the pipe 
diameter has not yet been determined, the characteristic operating point (He, 
Re) is located on a straight line with a slope equal to - 4. This straight line cuts 
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1 2 3 4 5 6 7 8 9 10 11 12 
log He 

FIGURE 9. (log Re,, log H e )  calculated for different values of m. 

1 0 - ~  

I 1 

10-2 
N 

10-1 

FIGURE 10. Experimental curves representing losses for a bentonite suspension (m = 0.9, 
7,  = 5.15 N/m2, pa = 0.0042 P1) in laminar and turbulent flow. V ,  2.6 cm I.D. pipe 
(He  = 2 . 2 4 ~  lo5); 0 ,  2.0 om I.D. pipe (He  = 1 . 4 6 ~  lo5);  A ,  1.6 cm I.D. pipe (He = 
1-96 x lo4); 0, 1.2 cm I.D. pipe (He = 4.6 x lo4). 
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the transition curve corresponding to the fluid plasticity parameter a t  a point 
corresponding to a diameter D,. For diameters smaller than D,, the flow will be 
turbulent and the losses must not be computed with the aid of figure 5. One 
must then have recourse to direct experimental results. 

1 o5 

u 

2 
2 104 
a 
a3 
d 

c 
a3 u 

lo3 
lo3 lo4 

Experimental Re, 
lo5 

FIGURE 11. Comparison between calculated transition Reynolds number and 
experimental transition Reynolds number (Re&,. A, cement rock slurry (Wilhelm, 
Wroughton & Loeffel 1939); a, Tho, suspension (Thomas 1962); 0, lime suspension 
(Alves, Boucher & Pigford 1952) ; v, Attasol suspension (Dodge 1958) ; +, sewage sludge 
(Cadwell & Babbitt 1941) ; +, clay suspension (Cadwell & Babbitt 1941) ; values obtained 
a t  Institut Franpis du PBtrole: 0, bentonite suspensions; A, bentonite + CMC + 
barite suspension; 0, red tannin drilling mud. 

4. Conclusions 
It has been found that the rheological behaviour of a lot of suspensions and 

some drilling muds can be conveniently represented by a formula with only 
three parameters. The Ostwald-De Waele and Bingham laws are particular 
cases of this general law. 

This formula has also been used to extrapolate at  the lower shear stresses 
which are difficult to measure on conventional viscometers. The accuracy of 
such extrapolation has been proved by the agreement between experimental 
and calculated head losses in circular tubes. 
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For the transition flow rate, an empirical transition criterion first proposed 
by Ryan & Johnson has been adopted to compute the relationship between two 
non-dimensional numbers, viz. the generalized Reynolds and Hedstrom num- 
bers. The experimental and the calculated transition Reynolds numbers appear 
to agree quite well and demonstrate that the Ryan & Johnson criterion may 
possess a hidden but fundamental justification. 
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